Abstract

Utilizing whole cell biocatalyst for biodiesel production has some advantages since it can avoid the complex procedures of isolation, purification and immobilization of extracellular lipase. However, during repeated use of Rhizopus oryzae ( R. oryzae) IFO4697 whole cell for biodiesel production in solvent-free system, the whole cell exhibited very poor stability; while the whole cell stability has been found to be significantly improved in tert-butanol system compared to that in solvent-free system. The difference in whole cell stability was found to be due to the difference of product accumulation between solvent-free and tert-butanol system. After 144 h reaction, glycerol and methyl ester accumulated in the cell in solvent-free system came up to about 1000 mg/g and 350 mg/g dry biomass, respectively, while in tert-butanol system, glycerol and methyl ester accumulation was kept at a relatively low level, approximately 100 mg/g and 2 mg/g dry biomass, respectively. The accumulated glycerol influenced whole cell stability through mass transfer limitation only, while the accumulated methyl ester influenced whole cell stability through both mass transfer limitation and product inhibition. Further study showed that a slight loss in enzymatic activity in tert-butanol system was caused by protein leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.