Abstract

A series of CeO2‐loaded titania nanotubes (CeO2‐TNTs) hybrid materials with different CeO2 loadings were synthesized by co‐precipitation method and then incorporated into epoxy resin (EP) to prepare CeO2‐TNTs flame‐retardant epoxy nanocomposites. Structure and morphology characterization indicated the successful synthesis of CeO2‐TNTs. The effect of CeO2‐TNTs with different CeO2 loading capacity on the flame retardance of EP was compared and analyzed by the thermogravimetric analysis, Cone and Raman. The results showed that CeO2 loading could increase the carbon residue of nanocomposites, reduce the peak heat release rate (PHRR) and total heat release (THR), and improve the fire safety of EP. The residual carbon content of EP/0.1CeO2‐TNTs sample at 700°C reached 19.8% with the lowest degradation rate, and the PHRR and THR were reduced to 680 kW/m2 and 32.9 MJ/m2, respectively. Such a significant improvement in flame‐retardant properties for EP could be attributed to the protective effect of CeO2‐TNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call