Abstract

A series of monolithic catalysts with different NiO loadings were prepared by supported on the acid treated cordierite. Their specific surface area, pore volume, pore distribution, and catalytic performance in the reforming reaction of biomass pyrolysis gas for synthesis gas were studied. The results show that the specific surface area and pore volume of the cordierite after acid treatment are up to 156 m(2)/g and 0.099 m(3)/g respectively. However, with increasing nickel oxide loading, the specific surface area and pore volume of the catalyst decrease greatly and then tend to steady. The effect of nickel oxide loading on gas composition is quite small, and the total content of H(2) and CO is maintained at 90%. The tar conversion is not affected by the specific surface area of the catalysts. After 6 h catalytic reaction, the structure of the catalysts with 28% NiO does not change, and the quantity of carbon deposition is about 1%. The tar conversion decreases from 87.4% to 81.3%. It is suggested that the nickel-based catalyst has relatively stable activity under high tar concentration conditions, which is attributed to the high dispersion of nickel particles on the support and high stability of the catalyst phase structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call