Abstract

To understand the nanoscale pore development characteristics of closed coal under the combined influence of temperature and confined pressure, a series of experiments at different temperatures and pressures were carried out using a custom closed coal temperature and pressure experimental system. The lean coal samples were taken from a mining area in Qinshui Basin, North China. In these experiments, the temperature was 200 °C or 300 °C, the pressure was 14 MPa or 23 MPa, respectively, and the experiment duration was 12 h. The CH₄/N₂/CO₂ isothermal adsorption tests were carried out on all samples. The results show that the custom experimental system can be used to effectively study the effect of mechanical-thermal interaction on the nanoscale pores in closed coal. Before and after the experiment, the Langmuir volume increases, and the methane adsorption capacity increases. The specific surface area and pore volume of the micropores (<1 nm) decrease, but the specific surface area and pore volume of the pores (6-100 nm) increase. The specific surface area and pore volume of the micropores (<1 nm) are negatively correlated with the temperature and decrease with increasing temperature. Fractal analysis results show that under the influence of temperature and pressure, the heterogeneity of the nanoscale pore structure and the roughness of the pore surface increase. This research is of important theoretical significance for the safe mining of deep coal seams and for the development of coalbed methane resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call