Abstract

A new fulleride, (K[DB18C6])(4)(C(60))(5)·12THF, was prepared in solution using the "break-and-seal" approach by reacting potassium, fullerene, and dibenzo[18]crown-6 in tetrahydrofuran. Single crystals were grown from solution by the modified "temperature difference method". X-ray analysis was performed revealing a reversible phase transition occurring on cooling. Three different crystal structures of the title compound at different temperatures of data acquisition are addressed in detail: the "high-temperature phase" at 225 K (C2, Z=2, a=49.055(1), b=15.075(3), c=18.312(4) Å, β=97.89(3)°), the "transitional phase" at 175 K (C2 m, Z=2, a=48.436(5), b=15.128(1), c=18.280(2) Å, β=97.90(1)°), and the "low-temperature phase" at 125 K (Cc, Z=4, a=56.239(1), b=15.112(3), c=36.425(7) Å, β=121.99(1)°). On cooling, partial radical recombination of C(60)(·-) into the (C(60))(2)(2-) dimeric dianion occurs; this is first time that the fully ordered dimer has been observed. Further cooling leads to formation of a superstructure with doubled cell volume in a different space group. Below 125 K, C(60) exists in the structure in three different bonding states: in the form of C(60)(·-) radical ions, (C(60))(2)(2-) dianions, and neutral C(60), this being without precedent in the fullerene chemistry, as well. Experimental observations of one conformation exclusively of the fullerene dimer in the crystal structure are further explained on the basis of DFT calculations considering charge distribution patterns. Temperature-dependent measurements of magnetic susceptibility at different magnetic fields confirm the phase transition occurring at about 220 K as observed crystallographically, and enable for unambiguous charge assignment to the different C(60) species in the title fulleride.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.