Abstract

Lead compounds containing nitrogen pharmacophores from natural resources have garnered interest among researchers due to their potential for drug development. However, the extractions of the active metabolites are usually labor-intensive and time-consuming. In this study, halogenated vanillin derivatives featuring azo dyes (N=N) (1a-1 h) and Schiff base (C=N) (2a-2 h) have been synthesized via diazonium coupling and nucleophilic substitution reaction, respectively. The comparative effect of N=N and C=N moieties was evaluated for antibacterial properties against Staphylococcus aureus and Escherichia coli via disc diffusion method. Incorporating C=N (8–13 mm) into the vanillin network showed excellent inhibition against S. aureus compared to N=N (7–8 mm) and the standard ampicillin (12 mm). While the halogenated vanillin featuring N=N (7–9 mm) and C=N (7–8 mm) moieties showed excellent zone of inhibitions against E. coli compared to the parent vanillin. The in-silico screening using AutoDock Vina, showed 2c-h (inhibition zone > 10 mm) with a high binding affinity against DNA gyrase enzyme with binding energy ranging from − 7.3 to − 7.9 kcal/mol, similar to re-docking of ampicillin − 7.6 kcal/mol and co-crystalize compounds BPH651 with − 7.5 kcal/mol. This research contributes a significant milestone in drug design, especially for the development of new antibacterial drugs with outstanding properties.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.