Abstract

Objective: Arylidene-1, 3-oxazol-5-ones represent potential antibacterial agents. In the present work, a series of 4-substituted benzylidene-2- (phenoxymethyl) oxazol-5(4H)-ones were synthesized and screened for antibacterial activity against Gram-negative bacteria Escherichia coli. To explore plausible mechanisms, synthesized compounds were docked with DNA-Gyrase enzyme.
 Methods: All the reactants, phenoxy acetyl chloride, acetic anhydride, sodium acetate, substituted aromatic aldehydes, and glycine were triturated in a mortar by mechanical stirring. The antibacterial potentiality of the compounds was screened against E. coli using the disk diffusion method and the activity was recorded as a zone of inhibition.
 Results: Compound 2d, possessing 3, 4, 5-trimethoxy functionality on benzylidene ring exhibited the highest activity with 19 mm of the zone of inhibition which might be due to its higher interactions with DNA-Gyrase enzyme (ΔG-8.41 kcal/mol). Compounds 2a, 2b, and 2c exhibited moderate activity in the antimicrobial assay as well as in docking study indicating the positive contribution of substitution on benzylidene ring.
 Conclusion: A series of 4-substituted benzylidene-2-(phenoxymethyl) oxazol-5(4H)-ones were synthesized and evaluated for antibacterial activity. Compounds 2a, 2b, and 2c displayed moderate activity whereas 2d showed maximum zone of inhibition (19 mm). The good activity of these derivatives presumed to be due to the conformational flexibility of phenoxy methylene moiety which can be well accommodated in the target binding site.

Highlights

  • According to the recent reports, 30 new infectious diseases and existing infections including HIV, malaria, and tuberculosis are re-emerging globally at an alarming rate

  • Substituted phenoxymethyl oxazolones linked to arylidene moiety (Fig. 2) were synthesized by Aaglawe et al In their study, it was demonstrated that substituent groups on benzylidene ring (4-chloro/4-bromo) exert a significant effect on antimicrobial activity [24]

  • Chemistry A series of 4-substituted benzylidene-2-(phenoxymethyl) oxazol5(4H)-ones were synthesized by triturating phenoxy acetyl chloride, sodium acetate, acetic anhydride, glycine, and substituted benzaldehyde in a mortar

Read more

Summary

Methods

Phenoxy acetyl chloride, acetic anhydride, sodium acetate, substituted aromatic aldehydes, and glycine were triturated in a mortar by mechanical stirring. The antibacterial potentiality of the compounds was screened against E. coli using the disk diffusion method and the activity was recorded as a zone of inhibition

Results
Conclusion
INTRODUCTION
METHODS
RESULTS AND DISCUSSION
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.