Abstract
Soybean, one of the most important oil seed crops known for its high-quality oil and protein content, is widely grown and consumed worldwide. However, the crop is severely affected by various biotic and abiotic factors, of which diseases are by far the most important, resulting in significant yield losses each year. The major diseases affecting soybean production include soybean rust, soybean mosaic virus, anthracnose, charcoal rot, Sclerotinia stem rot (white mold), seedling diseases, sudden death syndrome, frogeye leaf spot, and Stem canker. Development of soybean varieties resistant to these diseases using modern biotechnology techniques is a viable option to increase genetic potential and boost soybean production. This paper, hence, aims to explore the application of functional genomics in improving resistance to various diseases in soybean. Therefore, this paper provides a comprehensive overview of the progress made in improving soybean resistance to major diseases by using the various approaches of modern biotechnological tools such as molecular markers, QTL/gene mapping, omics technology, freely available online databases, genome editing, genetic modification, and marker-assisted breeding. This review also highlights future directions that may be important for genomics-based research programs to improve disease resistance in soybean while increasing production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have