Abstract

The cytotoxic profile and antiproliferative and mitochondrial effects of triterpene acid conjugates with mitochondriotropic lipophilic triphenylphosphonium (TPP+) and F16 cations were evaluated. Maslinic and corosolic acids chosen as the investigation objects were synthesized from commercially available oleanolic and ursolic acids. Study of the cytotoxic activity of TPP+ and F16 triterpenoid derivatives against six tumor cell lines demonstrated a comparable synergistic effect in the anticancer activity, which was most pronounced in the case of MCF-7 mammary adenocarcinoma cells and Jurkat and THP-1 leukemia cells. The corosolic and maslinic acid hybrid derivatives caused changes in the progression of tumor cell cycle phases when present in much lower doses than their natural triterpene acid precursors. The treatment of tumor cell lines with the conjugates resulted in the cell cycle arrest in the G1 phase and increase in the cell population in the subG1 phase. The cationic derivatives of the acids were markedly superior to their precursors as inducers of hyperproduction of reactive oxygen species and more effectively decreased the mitochondrial potential in isolated rat liver mitochondria. We concluded that the observed cytotoxic effect of TPP+ and F16 triterpenoid conjugates is attributable to the ability of these compounds to initiate mitochondrial dysfunctions. Their cytotoxicity, antiproliferative action, and mitochondrial effects depend little on the type of cationic groups used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call