Abstract

High dense Na–β″-Al 2O 3 electrolyte materials have been synthesized by solid state reaction with boehmite, magnesia, sodium carbonate and titania as the starting materials. The effects of TiO 2 doping percentage on the properties and microstructures of the prepared samples were investigated by X-ray diffraction (XRD), scan electron microscope (SEM), three point bending and ionic conductivity tests. The results indicated that both the relative densities and the phase purities of the samples could effectively improved after doping with TiO 2. The proper doping amount of TiO 2 was to form the transient liquid phase during the sintering process, which would reduce the steric effect and accelerate the diffusivity. Moreover, the mechanical performance of the obtained sample increased to the value above 280 MPa as the doping amount of TiO 2 was larger than 1 wt%. As to the electric properties, if the doping amount was less than 1 wt%, the grain boundary resistivity reduced as the density increased, so the ionic conductivity of the Na–β″-Al 2O 3 was enhanced obviously. However, when the doping amount was above 1 wt%, the ionic conductivity was deteriorated because of the increased resistivity caused by the broadening grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.