Abstract

Polysaccharides are abundant in nature and employed in various biomedical applications ranging from scaffolds for tissue engineering to carriers for drug delivery systems. However, drawbacks such as tedious isolation protocols, contamination, batch-to-batch consistency, and lack of compositional control with regards to stereo- and regioselectivity impede the development and utility of polysaccharides, and thus mimetics are highly sought after. We report a synthetic strategy to regioselectively functionalize poly-amido-saccharides with sulfate or phosphate groups using post-polymerization modification reactions. Orthogonally protected β-lactam monomers, synthesized from D-glucal, undergo anionic ring-opening polymerization to yield polymers with degrees of polymerization of 12, 25, and 50. Regioselective deprotection followed by functionalization and global deprotection affords the sulfated and phosphorylated poly-amido-saccharides. The resulting anionic polymers are water soluble and non-cytotoxic and adopt helical conformations. This new methodology provides access to otherwise inaccessible functional polysaccharide mimetics for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.