Abstract

Peptide-based hydrogels are of interest to biomedical applications. Herein, we have explored the introduction of fluorinated amino acids in hydrogelator H-FQFQFK-NH2 (P1) to design a series of fluorinated peptide hydrogels and evaluate the in vitro and in vivo properties of the most promising analogues. The impact of fluorinated groups on peptide gelation, secondary structure, and self-assembly processes was assessed. We show that fluorine can significantly improve hydrogel stiffness, compared to the nonfluorinated reference P1. For P15 (H-FQFQF(o-CF3)K-NH2), P18 (H-FQFQF(F5)K-NH2), and P19 (H-FQFQM(CF3)K-NH2), microscopy studies scrutinized fiber morphologies and alignment in the network. In vitro release studies of hydrogels loaded with an opioid cargo suggested improved hydrogel stability for P15 and P18. This improved stability was further validated in vivo, notably for P15, giving the most significant increased gel residence time, with more than 20% of hydrogel still present 9 days post-injection, as monitored by nuclear SPECT-CT imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.