Abstract

Hydrogels are a class of special materials that contain a large amount of water and behave like rubber. These materials have found broad applications in tissue engineering, cell culturing, regenerative medicine etc. Recently, the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications. However, the mechanical properties of peptide-based hydrogels are intrinsically weak. Therefore, it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels. In this review, we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels. In addition, we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability. These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials. It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues. More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call