Abstract

In both biological and engineered systems, polysaccharides offer a means of establishing structural stiffness without altering the availability of water. Notable examples include the extracellular matrix of prokaryotes and eukaryotes, artificial skin grafts, drug delivery materials, and gels for water harvesting. Proper design and modeling of these systems require detailed understanding of the behavior of water confined in pores narrower than about 1 nm. We use molecular dynamics simulations to investigate the properties of water in solutions and gels of the polysaccharide alginate as a function of the water content and polymer cross-linking. We find that a detailed understanding of the nanoscale dynamics of water in alginate solutions and gels requires consideration of the discrete nature of water. However, we also find that the trends in tortuosity, permeability, dielectric constant, and shear viscosity can be adequately represented using the "core-shell" conceptual model that considers the confined fluid as a continuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.