Abstract

Calcium phosphates biocements are biomaterials that present crystallographic and mineralogical characteristics similar to human skeletal structure. This has led to the development of new calcium phosphates biomaterials for biomedical applications, especially biomaterials for repairing defects and bone reconstruction. Calcium phosphates biocements are a promising alternative in biomedical applications, for they are easy to mold, they have good wettability, hydration and hardening capacity during its application in biological means. This work aimed at the synthesis of hydrated calcium phosphates powder, through a simple reactive method, which will be the basis for the production of calcium phosphate biocimentos with self-setting reaction. Three calcium phosphates compositions were produced via CaCO3/phosphoric acid reactive method in the ratios Ca/P = 1,5; 1,6 e 1,67 molar. The presented results are associated to hydrated powder morphology and synthesis process control. Scanning Electron Microscopy (SEM) helped with the morphological characterization of the powders, the laser analysis method was used for determining particle size and the Fourier Transformed Infrared Spectroscopy (FTIR) gave support to the identification of H2O e PO43-grouping vibrational bands. The work showed that for the different powder compositions the hydrated calcium phosphate phase is formed by clustered fine particles. This demonstrated that the chosen synthesis method permits the obtention of hydrated calcium phosphates, precursors for later biocement production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call