Abstract

Calcium phosphates biocements are biomaterials that present crystallographic and mineralogical characteristics similar to human skeletal structure. This has led to the development of new calcium phosphates biomaterials for biomedical applications, especially biomaterials for repairing defects and bone reconstruction. Calcium phosphates biocements are a promising alternative in biomedical applications, for they are easy to mold, they have good wettability, hydration and hardening capacity during its application in biological environment. This work aimed at the synthesis of hydrated calcium phosphates powder, precursor to late biocements development. Three calcium phosphates compositions were produced via CaCO3/phosphoric acid reactive method in the ratios Ca/P = 1,5; 1,6 e 1,67 molar. The presented results are associated to hydrated powder morphology and synthesis process control. Field Electronic Microscope helped with the morphological characterization of the powders, Fourier Transformed Infrared Spectroscopy (FTIR) gave support to the identification of H2O e PO43- grouping vibrational bands and x-ray diffractometry (XRD) served on crystallographic characterization of hydrated calcium phosphates. The work showed that for the different powder compositions the hydrated calcium phosphate phase is formed by clustered fine particles. This demonstrated that the chosen synthesis method permits the obtaining nanoparticles of hydrated calcium phosphates, precursors for later biocement production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.