Abstract

Developing a novel ceramic nanopowder is essential for thermal-sprayed high-performance nanostructured thermal barrier coatings. Recently, high-entropy rare-earth zirconates have been extensively concerned by researchers. In the present work, we synthesized high-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 (LNSGY) nanopowders by the sol-gel technology. In addition, the LNSGY nanopowders were investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Results show that LNSGY nanopowders have a typical defective fluorite structure. The average crystalline size of LNSGY nanopowders is approximately 15 nm. Meanwhile, the elemental composition of LNSGY nanopowders presents uniform distribution. This paper lays a foundation for high-performance high-entropy nanostructured feedstocks used for plasma spraying in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call