Abstract

In this paper, we report the effect of sulfur (S) substitution with selenium (Se) in CZTS nanocrystals prepared by hot injection method. The formation of kesterite-copper zinc tin sulfide (Cu2ZnSnS4, CZTS) and copper zinc tin selenide (Cu2ZnSnSe4, CZTSe) nanocrystals is confirmed by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) analysis. The XRD, TEM and atomic force microscopy (AFM) analysis shows an overall increase in average crystallite size upon Se substitution. AFM images revealed an increase in root mean square surface roughness (Sq) and average surface roughness (Sa) when S in CZTS is replaced by Se. The substitution of S by Se in host CZTS narrows the optical band gap from 1.56 to 1.03 eV. The ultraviolet photoelectron spectroscopy (UPS) analysis shows shift in valence band and conduction band edge in CZTSe compared to CZTS. The photocurrent density measurement in synthesized CZTSe thin films is ~ 4 to 5 times higher than CZTS thin films. The obtained results show that CZTSe can be a promising candidate as absorber material in photovoltaic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call