Abstract

ABSTRACTNanocomposites formed by ferrimagnetic and ferroelectric materials are multiferroic material in which magnetoelectric coupling occurs via piezoelectricity and magnetostriction phenomena. These nanocomposites have a variety of applications in tunable microwave devices using electric control of spin wave propagation or new magnetic memories in which the magnetic response is controlled by electric field.In this work, transparent and homogeneous thin films of barium titanate interleaved with cobalt ferrite were prepared by sol–gel method using dip-coating process. Films of pure barium titanate and cobalt ferrite were also prepared for comparison. The nanocomposite films were deposited onto clean quartz substrates, where a coating of each material was deposited interleaved, where the cobalt ferrite film formed the last layer. The films were dried in air after each dipping and heated at 900 oC for 1 hour to convert the amorphous films into crystalline ones. The samples were characterized by low angle X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) and UV-Vis spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call