Abstract

AbstractPolyacrylamide (PAM) has become a potential additive in drilling, but it has limitations in terms of viscosity, fluid loss, and bored pile stability concerns. Previous rheological studies have reported silica (SiO2) usage in PAM modification. However, there is insufficient rheological information such as plastic viscosity, apparent viscosity, yield point, and gel strength. Herein, this research investigates the effects of SiO2 in PAM with comprehensive rheological data. The morphological properties of SiO2 were analyzed. Compared with bare PAM, modified PAM demonstrated distinct chemical structures, but both were hydrophilic fluids. Moreover, an undulated trend was observed in the rheological results of all modified PAM for all concentrations of SiO2 and all the selected temperatures. However, all modified PAM showed better rheological performance than bare PAM. Consequently, 0.5 wt% SiO2 is a promising formulation for PAM modification, which can even be simulated in the performance of the bored pile drilling. For thermal stability, the rheological performance of bare PAM and modified PAM performed better at 60 and 40°C, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.