Abstract

AbstractSilicone rubber (SR) is an ideal dielectric elastomer substrate due to its excellent flexibility and fast response speed. However, the innate low dielectric permittivity (ε) of SR generally requires a rather high driving voltage that restricts its widespread application. Typical attempts to increase ε of SR usually deteriorate either its flexibility or electrical stability. Herein, conductive multi‐walled carbon nanotube (MWCNT) were first surface modified with polyphenols (PNs) (MWCNT@PNs), aiming to facilitate its well dispersion within SR matrix, which may maintain the softness and electrical stability of SR via suppressing concentrated physical crosslinking and local leakage current flow. Then, five‐layered MWCNT@PNs/SR composites were prepared with the outer two insulating layers of SR while middle three dielectric layers of MWCNT@PNs filled SR. The multilayered structure further hindered the formation of conductive pathways through the composites, promising a high breakdown strength of the composites. Therefore, the multilayered MWCNT@PNs/SR composites exhibited increased ε, maintained low Young's modulus and electrical breakdown strength compared with pure SR of the same five‐layered structure. Among them, the composite with uniformly distributed MWCNT@PNs (m‐1: 1: 1) showed a highest actuation strain of 11.9% (at 19.6 kV mm−1), which was 4.1 times higher than that of SR (2.9% at 19.1 kV mm−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.