Abstract

In this study, β-TCP/CNT nanocomposite has been synthesized by solution precipitation method. Then, the effects of the different percentage of CNT (CNT1β-TCP, CNT3β-TCP, CNT5β-TCP) and surfactant (CNT1β-TCP1SDBS, CNT1β-TCP2SDBS, CNT1β-TCP3SDBS) on β-TCP/CNT nanocomposite powder were studied. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) analyses were used to characterize the samples. The observations revealed that the microstructure of 1wt% CNT could provide dispersion without agglomeration in nanocomposite powder; however, a higher concentration of CNT powder in the nanocomposite resulted in the formation of Ca2PO7 phase. Implementing 2wt% of SDBS as a surfactant modified the shape, size, and distribution of CNT particles on nanocomposites. Finally, the nanocomposite sample was immersed in simulated body fluid (SBF) to evaluate the in vitro bioactivity. It obviously showed an apatite layer on the surface after 7 days of immersion in SBF. Taken together, this nanocomposite might be potentially to be used as bone repair biomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.