Abstract

The fermentation of syngas is an attractive technology that can be integrated with gasification of lignocellulosic biomass. The coupling of these two technologies allows for treating a great variety of raw materials. Lignin usually hinders microbial fermentations; thus, the thermal decomposition of the whole material into small molecules allows for the production of fuels and other types of molecules using syngas as substrate, a process performed at mild conditions. Syngas contains mainly hydrogen, carbon monoxide, and carbon dioxide in varying proportions. These gases have a low volumetric energy density, resulting in a more interesting conversion into higher energy density molecules. Syngas can be transformed by microorganisms, thus avoiding the use of expensive catalysts, which may be subject to poisoning. However, the fermentation is not free of suffering from inhibitory problems. The presence of trace components in syngas may cause a decrease in fermentation yields or cause a complete cessation of bacteria growth. The presence of tar and hydrogen cyanide are just examples of this fermentation’s challenges. Syngas cleaning impairs significant restrictions in technology deployment. The technology may seem promising, but it is still far from large-scale application due to several aspects that still need to find a practical solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call