Abstract

In large-scale dairy farming, the use of high-temperature-fermented dairy manure bedding instead of rice husk-based bedding and other commercial types of bedding is widely favored. Strip-stacking aerobic fermentation is the main production method of dairy manure bedding, but it has problems including unstable fermentation and the secondary breeding of pathogens. In this work, a multi-probe, integrated, online monitoring system for temperature and relative humidity was used for fermentation process optimization. The effects of the temporal and spatial distribution of fermentation temperature and relative humidity on the nutrient content curve and the moisture and ash content of manure bedding materials were systematically studied. The effect of the fermentation process on the retention rate of effective bedding materials (cellulose, hemicellulose, and lignin) was analyzed. The experiments proved that high-quality bedding material can be obtained through reasonable stacking fermentation. The fabricated bedding material has a total dry base content consisting of cellulose, hemicellulose, and lignin of 78%, an ash content of 6%, and a nutrient content of 17%. The obtained bedding material was produced to increase the bed rest rate and continuously inhibit the bedding bacteria content, keeping it at a low level for 5 days. This study proves that temperature and humidity monitoring can guide the optimization of the strip-stacking fermentation process of dairy manure and that it can be applied to large-scale farms to improve fermentation parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.