Abstract

Underwater bubbling plasma (UBP) coupled with diatomite-CoFe2O4 (Dt-CFO) activated peroxymonosulfate (PMS) was proposed for the degradation of ciprofloxacin hydrochloride (CIP) in this work. The catalyst sample of Dt-CFO with large specific surface area, rich active sites and excellent magnetic property was prepared by the hydrothermal method and systematically characterized to investigate its material properties. The combination of UBP and Dt-CFO activated PMS (UBP/Dt-CFO/PMS) showed excellent synergy with the synergistic factor of 1.98, and reached the CIP degradation percentage of 94.7%, which corresponded to the kinetic constant of 0.097 min−1. Dt-CFO with the diatomite content of 30 wt% achieved the best catalytic activity in the reaction system. Higher catalyst and PMS dose, peak voltage, pulse frequency and lower initial CIP concentration were beneficial for CIP removal. The addition of Cl−, HCO3−, SO42− and humic acid suppressed CIP degradation, while NO3− had no effect on CIP removal. The Dt-CFO composite exhibited excellent reusability and low leaching metal amount, demonstrating its good stability. SO4−·, ·OH, ·O2−, 1O2, eaq, O3 and H2O2 were the active species confirmed to be involved in CIP degradation. The redox circles of ≡ Co(Ⅱ)/≡Co(Ⅲ) and ≡ Fe(Ⅱ)/≡Fe(Ⅲ) on Dt-CFO surface and the plasma-induced physicochemical effects dominated PMS activation. The decomposition process of CIP was explored through fluorescence spectra. Three degradation pathways were inferred, and the toxicity analysis showed the toxicity of CIP solution weakened after discharge treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.