Abstract
Understanding how human activities affect wildlife is fundamental for global biodiversity conservation. Ongoing land use change and human-induced climate change, compel species to adapt their behaviour in response to shifts in their natural environments. Such responses include changes to a species' diet or trophic ecology, with implications for the wider ecosystem. This is particularly the case for predatory species or those that occupy high positions within trophic webs, such as raptors. Between 2002 and 2019, we observed 1578 feeding events of the globally near threatened and understudied, Red-necked Falcon (Falco chicquera) in Bangladesh. We explored the effects of mean monthly temperature, precipitation, temperature differences, and urban land cover on (a) mean prey weights and (b) dietary composition of 15 falcon pairs. Falcons hunted smaller prey items during months with increased temperatures and precipitation, and in more urban areas. However, during months with increased temperature differences, falcons tended to prey on larger prey items. Being specialist aerial hunters, these dietary patterns were largely driven by the probabilities of bats and birds in the diet. Falcons were more likely to prey on bats during warmer and wetter months. Furthermore, urban pairs tended to prey on bats, whereas more rural pairs tended to prey on birds. Mean monthly temperature difference, i.e., a proxy for climate change, was better at explaining the probability of bats in the falcon diet than mean monthly temperature alone. Anthropogenic dietary shifts can have deleterious effects on species with declining populations or those of conservation concern. The effects of urbanisation and human-induced climate change are expected to continue into the foreseeable future. Therefore, our findings represent a cornerstone in our understanding of how falcons respond to an increasingly human-dominated world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.