Abstract

In this work, an electrochemical system combined with low-cost UV-LEDs was implemented for the inactivation of Escherichia coli and Pseudomonas aeruginosa. The individual elimination of these bacteria was followed by plate counting and flow cytometry, as complementary techniques to establish the cell inactivation and non-viability, respectively. The contribution of the different parts of the disinfection system (anode, cathode, and light) was determined. In addition, the efficiency of the UV-LEDs/GDE/DSA system in the disinfection of an irrigation water sample was studied. It was found that the combination of the electrochemical system with UV-LEDs was highly synergistic (φ > 7), having low electric energy consumptions per order of magnitude (EEO: 1.13 × 10-2 and 1.55 × 10-2 kWh/m3 order). Moreover, some differences in the inactivation kinetics and synergy between E. coli and P. aeruginosa were observed and linked to the structural/morphological characteristics of the two bacteria. Remarkably, the electrochemical system combined with low-cost UV-LEDs inactivated both target microorganisms after only 2min of treatment. The flow cytometry analyses evidenced the damage to the cell membrane of the bacteria by the simultaneous and synergistic action of the electrogenerated H2O2 and active chlorine species (ACS), plus the attacks of photo-generated reactive oxygen species. This synergistic combination in the UV-LEDs/GDE/DSA system demonstrated remarkable efficiency in the disinfection of an irrigation water sample, achieving the elimination of culturable bacteria in 45min of treatment. The results of this research demonstrated the capacity and great potential of an easy combination of electrochemistry with UV-LEDs as an alternative system for the elimination of gram-negative bacteria in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.