Abstract
Cr2O3/g-C3N4 photocatalyst was successfully synthesized via the one-pot thermal polycondensation method by mixing different ratios of CrCl3.H2O and thiourea. Thiourea was used as the precursor for building g-C3N4. All samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and electrochemical experiment (photocurrent and EIS). The photocatalytic performance of the composites was studied by the photodegradation process of tetracycline hydrochloride (TC-HCl) and reactive orange 16 (RO16) under visible light irradiation. The results showed that the 1%Cr2O3/g-C3N4 was the most effective photocatalyst with 94.9% (30min) and 80.6% (90min) for degradation of RO16 and TC-HCl, respectively, when compared with the other ratios. Additionally, from the reactive species trapping test, superoxide radical was the major reactive species in this reaction. Finally, this material could be reused with great efficiency with 5 and 7 times for TC-HCl and RO16, respectively. The synthesized composites manifest the great potential for the wastewater treatment industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.