Abstract

Solar driven water-to-hydrogen conversion is a promising technology for the typical sustainable production mode, so increasing efforts are being devoted to exploit high-performance photocatalytic materials. Cadmium sulfide (CdS) is widely used to prepare highly active photocatalysts owing to its merits of broadband-light harvesting and feasible band structure. However, the slow photo-carriersʹ migration in CdS body structure generally results in high-frequency carriers recombination, which leads to unsatisfied photoactivity. Metallic single-atom surface decoration is an effective method to build the strong metal-support interaction for promotion of photo-carriersʹ migration. Herein, a simple light-induced reduction procedure was proposed to decorate single-atomic Pt on the surface of CdS nanoparticles for highly photocatalytic HER activity. Research showed that the synergetic metal (Pt)-semiconductor (CdS) interaction significantly promoted the body-to-surface (BTS) photo-carriers’ migration of CdS, thereby the high light-to-fuel conversion efficiency (AQY500 nm = 25.70%) and 13.5-fold greater simulated sunlight driven HER rate of bare CdS was achieved by this CdS-Pt nano-photocatalyst. Based on the photo-electrochemical analysis and density functional theory calculations, the remarkably improved HER photoactivity can be attributed to the enhanced light-harvesting, promoted BTS electron migration and reduced reaction energy barriers. This study provides a facile procedure to obtain CdS based photocatalyst with metallic single-atom sites for high-performance HER photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.