Abstract
Synchrotron x-ray radiation from laser wakefield accelerated electron beams was characterized at the HERCULES facility of the University of Michigan. A mono-energetic electron beam with energy up to 400 MeV was observed in the interaction of an ultra-short laser pulse with a super-sonic gas jet target. The experiments were performed at a peak intensity of 5×1019 W/cm2 by using an adaptive optic. The accelerated electron beam undergoes a so called "betatron" oscillation in an ion channel, where plasma electrons have been expelled by the laser ponderomotive force, and, therefore, emits synchrotron radiation. We observe broad synchrotron x-ray radiation extending up to 30 keV. We find that this radiation is emitted in a beam with a divergence angle as small as 12×4 mrad2 and can have a source size smaller than 3 microns and a peak brightness of 1022 photons/mm2/mrad2/second/0.1% bandwidth, which is comparable to currently existing 3rd generation conventional light sources. This opens up the possibility of using laser-produced "betatron" sources for many applications that currently require conventional synchrotron sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.