Abstract

A hardware in the loop experimental platform is established to evaluate the optimal noise reduction prediction and maintenance capability of multiple propellers under high-precision synchrophasing control. This platform incorporates an online propeller noise model and a digital turboprop engine model into a novel integrated measurement system. Firstly, an improved propeller signature theory using CFD simulation's sound pressure signals is proposed to predict the online propeller noise efficiently. It achieves acceptable noise prediction accuracy using a subset of synchrophase angles to predict noise for all synchrophase angles at all receivers. Secondly, a high-priority interrupt method is proposed for the novel integrated measurement system to guarantee precise measurement and ultimate high-precision synchrophasing control. Thirdly, a turboprop engine model based on a component level model and propeller performance maps' CFD data is also established. To enhance the simulation confidence of the system, we compare the dynamic synchrophasing control effects between systems with and without the integration of a turboprop engine mode. The experimental results demonstrate that the high-priority interrupt method effectively reduces the synchrophase angle(θ) error. These approaches reduce noise by 3.62dB at SPL, exhibit a noise variation within ±0.13dB/°, and effectively manage thrust fluctuation within 4.14%. These results indicate that the method meets the control accuracy and noise reduction requirements in a twin-engined turboprop aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.