Abstract
The high sound pressure exerted on the payload during the launch of space vehicles can jeopardize its structural integrity. Given space and weight restrictions, designing fairing noise protection systems is not easy and the number of alternatives is limited, especially for small launchers. This work proposes the design of an acoustic protection based on an simultaneous increase of insulation and absorption in the system tailored to the payload fairing of a space launcher. To this end, the use of a panel made of Helmholtz resonators is investigated. The panel presents a deep subwavelength thickness, as well as a highly efficient acoustic protection (90% of absorption and 13 dB of Transmission Loss) over the frequency range of interest. The panel is designed by considering a reciprocal and non mirror symmetric transmission problem and the acoustic incidence from both sides of the panel. A high Transmission Loss in the frequency range of interest is then obtained when considering an incidence coming from the outside of the payload fairing, whereas the quasi-perfect absorption of acoustic waves is observed in the case where the incidence comes from the inside of the fairing. The panels are subsequently prototyped and their performance is experimentally evaluated. Measurements are correlated and discussed in view of the theoretical and numerical predictions. This mitigation approach sets a new trajectory for innovative noise reduction in small-scale space launchers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.