Abstract
The effect of synaptic plasticity on the synchronization mechanism of the cerebral cortex has been a hot research topic over the past two decades. There are a great deal of literatures on excitatory pyramidal neurons, but the mechanism of interaction between the inhibitory interneurons is still under exploration. In this study, we consider a complex network consisting of excitatory (E) pyramidal neurons and inhibitory (I) interneurons interacting with chemical synapses through spike-timing-dependent plasticity(STDP). To study the effects of eSTDP and iSTDP on synchronization and oscillation behaviors emerged in an excitatory-inhibitory balanced network, we analyzed three different cases, a small-world network of purely excitatory neurons with eSTDP, a small-world network of purely inhibitory neurons with iSTDP and a small-world network with excitatory-inhibitory balanced neurons. By varying the number of inhibitory interneurons, and that of connected edges in a small-world network, and the coupling strength, these networks exhibit different synchronization and oscillation behaviors. We found that the eSTDP facilitates synchronization effectively, while iSTDP has no significant impact on it. In addition, eSTDP and iSTDP restrict the balance of the excitatory-inhibitory balanced neuronal network together and play a fundamental role in maintaining network stability and synchronization. They also can be used to guide the treatment and further research of neurodegenerative diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.