Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A. AS model mice, which carry a maternal Ube3a null mutation (Ube3a(m-/p+)), recapitulate major features of AS in humans, including enhanced seizure susceptibility. Excitatory neurotransmission onto neocortical pyramidal neurons is diminished in Ube3a(m-/p+) mice, seemingly at odds with enhanced seizure susceptibility. We show here that inhibitory drive onto neocortical pyramidal neurons is more severely decreased in Ube3a(m-/p+) mice. This inhibitory deficit follows the loss of excitatory inputs and appears to arise from defective presynaptic vesicle cycling in multiple interneuron populations. In contrast, excitatory and inhibitory synaptic inputs onto inhibitory interneurons are largely normal. Our results indicate that there are neuron type-specific synaptic deficits in Ube3a(m-/p+) mice despite the presence of Ube3a in all neurons. These deficits result in excitatory/inhibitory imbalance at cellular and circuit levels and may contribute to seizure susceptibility in AS.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.