Abstract

We study the Gauss kernels for a class of (2+1)-dimensional linear Schrödinger equations with potential functions. The relationship between the Lie point symmetries and Gauss kernels for the Schrödinger equations is established. It is shown that a classical integral transformation of the Gauss kernel can be generated by a proper Lie point symmetry admitted by the equation. Then we can recover the Gauss kernels for the Schrödinger equations by performing the inverse integral transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.