Abstract
This paper mainly contributes to a classification of statistical Einstein manifolds, namely statistical manifolds at the same time are Einstein manifolds. A statistical manifold is a Riemannian manifold, each of whose points is a probability distribution. With the Fisher information metric as a Riemannian metric, information geometry was developed to understand the intrinsic properties of statistical models, which play important roles in statistical inference, etc. Among all these models, exponential families is one of the most important kinds, whose geometric structures are fully determined by their potential functions. To classify statistical Einstein manifolds, we derive partial differential equations for potential functions of exponential families; special solutions of these equations are obtained through the ansatz method as well as group-invariant solutions via reductions using Lie point symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.