Abstract

The solutions of the nonlinear and linearized Navier-Stokes equations are computed to investigate the instabilities and the secondary two- and three-dimensional regimes in the flow of an incompressible viscous fluid in a thin gap between two concentric differentially rotating spheres. The numerical technique is finite difference in the radial direction, spectral in the azimuthal direction, and pseudo-spectral in the meridional direction. The study follows the experiments by Yavorskaya, Belyaev and co-workers in which a variety of steady axisymmetric and three-dimensional travelling wave secondary regimes was observed in the case of a thin layer and both boundary spheres rotating. In agreement with the experimental results three different types of symmetry-breaking primary bifurcations of the basic equilibrium are detected in the parameter range under consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call