Abstract

The solutions of the nonlinear and linearized Navier-Stokes equations are computed to investigate the instabilities and the secondary two- and three-dimensional regimes in the flow of an incompressible viscous fluid in a thin gap between two concentric differentially rotating spheres. The numerical technique is finitedifference in radial direction, spectral in azimuthal direction, and pseudo-spectral in meridional direction. In agreement with the previous experimental results, two different three-dimensional traveling wave flows with spiral vortices are detected.KeywordsBasic FlowAzimuthal DirectionReflection SymmetryTaylor VortexSupercritical RegionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.