Abstract
Low complex permittivity and easy magnetic agglomeration prevent ferrites from achieving high-efficiency electromagnetic wave (EMW) absorption owing to the resultant narrow absorption bandwidth. Existing composition- and morphology-controlled strategies have made limited progress in fundamentally improving the intrinsic complex permittivity and absorption performance of pure ferrite. In this study, Cu/CuFe2O4 composites were synthesized using a facile and low-energy sol-gel self-propagating combustion, and the metallic Cu content was adjusted by changing the ratio of the reductant (citric acid) to the oxidant (ferric nitrate). The symbiosis and coexistence of metallic Cu with ferritic CuFe2O4 increases the intrinsic complex permittivity of CuFe2O4, which can be regulated by changing the metallic Cu content. Moreover, the unique ant-nest-like microstructure overcomes the issue of magnetic agglomeration. Because of the favorable impedance matching and strong dielectric loss (interfacial polarization and conduction loss) provided by the moderate metallic Cu content, S0.5 concurrently displays broadband absorption with an effective absorption bandwidth (EAB) of 6.32 GHz at an ultrathin thickness of 1.7 mm and strong absorption relying on minimum reflection loss (RLmin) of −48.81 dB at 4.08 GHz and 4.0 mm. This study provides a new perspective for improving the EMW absorption performance of ferrites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.