Abstract

Today, continuous publishing of differentially private query results is the de-facto standard. The challenge hereby is adding enough noise to satisfy a given privacy level, and adding as little noise as necessary to keep high data utility. In this context, we observe that privacy goals of individuals vary significantly over time. For instance, one might aim to hide whether one is on vacation only during school holidays. This observation, named time-dependent relevance, implies two effects which – properly exploited – allow to tune data utility. The effects are time-variant sensitivity (TEAS) and time-variant number of affected query results (TINAR). As today’s DP frameworks, by design, cannot exploit these effects, we propose Swellfish privacy. There, with policy collections, individuals can specify combinations of time-dependent privacy goals. Then, query results are Swellfish-private, if the streams are indistinguishable with respect to such a collection.We propose two tools for designing Swellfish-private mechanisms, namely, temporal sensitivity and a composition theorem, each allowing to exploit one of the effects. In a realistic case study, we show empirically that exploiting both effects improves data utility by one to three orders of magnitude compared to state-of-the-art w-event DP mechanisms. Finally, we generalize the case study by showing how to estimate the strength of the effects for arbitrary use cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.