Abstract
Today, continuous publishing of differentially private query results is the de-facto standard. The challenge hereby is adding enough noise to satisfy a given privacy level, and adding as little noise as necessary to keep high data utility. In this context, we observe that privacy goals of individuals vary significantly over time. For instance, one might aim to hide whether one is on vacation only during school holidays. This observation, named time-dependent relevance, implies two effects which – properly exploited – allow to tune data utility. The effects are time-variant sensitivity (TEAS) and time-variant number of affected query results (TINAR). As today’s DP frameworks, by design, cannot exploit these effects, we propose Swellfish privacy. There, with policy collections, individuals can specify combinations of time-dependent privacy goals. Then, query results are Swellfish-private, if the streams are indistinguishable with respect to such a collection.We propose two tools for designing Swellfish-private mechanisms, namely, temporal sensitivity and a composition theorem, each allowing to exploit one of the effects. In a realistic case study, we show empirically that exploiting both effects improves data utility by one to three orders of magnitude compared to state-of-the-art w-event DP mechanisms. Finally, we generalize the case study by showing how to estimate the strength of the effects for arbitrary use cases.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have