Abstract
Spatial crowdsourcing (SC) is a location-based outsourcing service whereby SC-server allocates tasks to workers with mobile devices according to the locations outsourced by requesters and workers. Since location information contains individual privacy, the locations should be protected before being submitted to untrusted SC-server. However, the encryption schemes limit data availability, and existing differential privacy (DP) methods do not protect the tasks’ location privacy. In this paper, we propose a differential privacy-based location protection (DPLP) scheme, which protects the location privacy of both workers and tasks, and achieves task allocation with high data utility. Specifically, DPLP splits the exact locations of both workers and tasks into noisy multi-level grids by using adaptive three-level grid decomposition (ATGD) algorithm and DP-based adaptive complete pyramid grid (DPACPG) algorithm, respectively, thereby considering the grid granularity and location privacy. Furthermore, DPLP adopts an optimal greedy algorithm to calculate a geocast region around the task grid, which achieves the trade-off between acceptance rate and system overhead. Detailed privacy analysis demonstrates that our DPLP scheme satisfies <inline-formula><tex-math notation="LaTeX">$\epsilon$</tex-math></inline-formula> -differential privacy. The extensive analysis and experiments over two real-world datasets confirm high efficiency and data utility of our scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.