Abstract
The susceptibility to hydrogen absorption and hydrogen thermal desorption of titanium alloys has been investigated in a neutral 2.0% NaF solution at 37°C under various applied cathodic potentials. Ti-0.2Pd, Ti-6Al-4V and Ti-11.3Mo-6.6Zr-4.3Sn alloys absorb hydrogen under less noble potentials than −1.5 V, −1.9 V and −1.4 V versus a saturated calomel electrode, respectively. The amounts of absorbed hydrogen of Ti-0.2Pd, Ti-6Al-4V and Ti-11.3Mo-6.6Zr-4.3Sn alloys under an applied potential of −2.0 V for 24 h are approximately 1200, 100 and 1100 mass ppm, respectively. Upon immersion in the 2.0% NaF solution under an applied potential, the hydrogen thermal desorption behavior of Ti-0.2Pd alloy differs from those immersed in acid fluoride solutions, whereas the hydrogen thermal desorption behaviors of Ti-6Al-4V and Ti-11.3Mo-6.6Zr-4.3Sn alloys are similar to those immersed in acid fluoride solutions. The present results indicate that in a neutral fluoride solution, the effects of an applied potential on the hydrogen absorption and desorption behaviors of Ti-6Al-4V alloy are considerably smaller than those of commercial pure titanium reported previously, Ti-0.2Pd and Ti-11.3Mo-6.6Zr-4.3Sn alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.