Abstract

We analyze the surface tension exerted at the interface between an active fluid and a solid boundary in terms of tangential forces. Focusing on active systems known to possess an equation of state for the pressure, we show that interfacial forces are of a more complex nature. Using a number of macroscopic setups, we show that the surface tension is a combination of an equation-of-state abiding part and of setup-dependent contributions. The latter arise from generic setup-dependent steady currents which "dress" the measurement of the "bare" surface tension. The former shares interesting properties with its equilibrium counterpart, and can be used to generalize the Young-Laplace law to active systems. Finally, we show how a suitably designed probe can directly access this bare surface tension, which can also be computed using a generalized virial formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.