Abstract

Abstract A study was made of the effects of wettability and interfacial tension the immiscible displacement of a liquid by another liquid for porous media. The influence of viscosity ratio was also investigated. Porous media used were polytetrafluoroethylene (TFE) cores prepared by compressing TFE powder under different pressures. It is shown that displacement of a wetting by a nonwetting liquid is always less efficient than the displacement of a nonwetting by a wetting fluid, all other things being equal. In the former case, the recovery efficiency can be increased substantially by either reducing the interfacial tension or increasing the viscosity of the displacing fluid. A qualitative discussion is given on the implications of this work to the recovery of crude oil by waterflooding. Introduction The high cost of oil exploration and new recovery schemes makes it imperative that waterflooding be conducted under conditions favoring most efficient oil recovery. To improve oil recovery by waterflooding, it is essential that the role played by interfacial forces in the entrapment of residual oil be studied and understood. Interfacial phenomena in natural rock, connate water and crude oil systems are very complicated because of the complexity of the natural liquids found in petroleum reservoirs, because of our inability to adequately describe the geometrical structure of the porous media and because of a lack of understanding of physical and chemical interactions between the liquids and surface of the pores. The problem becomes further complicated when one tries to elucidate the role of interfacial phenomena in fluid flow. Numerous studies of the displacement of oil by water under different interfacial tension or wettability conditions have been made. These studies have been performed in silica, alundum or sandstone systems using water and paraffin oil and also some surface active material to control the interfacial tension or and the contact angle. Unfortunately, the high energies of various interfaces involved favor adsorption and orientation of the surface active material at the intrafaces. Also the surface active material concentration at the interfaces exceeds that in the bulk of the liquid phases. Such surface excess may cause the surfactant distribution, the contact angle and the interfacial tension to differ from their measured static equilibrium values and makes interpretation of the displacement experiments difficult. Furthermore, as changes in also lead to changes in cos, the role played individually by one of these parameters in the displacement becomes obscured by the effect of the other. To circumvent these difficulties, a low surface energy solid and true solutions or pure liquids should be used. Use of a low surface energy solid minimizes adsorption and orientation effects at the solid-liquid interfaces. By controlling and cos through use of selected pairs of pure liquids or true solutions rather than by surfactants, the adsorption effects at liquid-liquid interfaces are eliminated. In the present study TFE cores were used as me porous media. Liquids used were water sucrose solutions, paraffin oils and benzyl, n-butyl and isobutyl alcohols. The interfacial tension was varied from 40 to 1.1 dynes/cm by suitably choosing the liquid pair. A surface above material was added to the water-oil system only in the case where interfacial tension of 0.5 dynes/ cm was desired. No precise changes of cos were attempted. However, either the displaced or the displacing liquid could be made the one which preferentially wets the TFE surface. Using sucrose solutions and blends of paraffin oils proved to be a convenient way of changing the viscosity ratio between the displaced and displacing liquids. The present investigation examines the effect of interfacial tension, wettability and viscosity ratio on the immiscible liquid-liquid displacement from porous media. SPEJ P. 217ˆ

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call