Abstract

A series of different fluorinated polymer platforms used for early and current 157-nm photoresists is investigated with regard to blanket etch properties and surface roughness. Besides methacrylic-based polymers applied for 193-nm lithography, fluorine containing norbornene homopolymers, fluorinated cycloolefines, and tetrafluoroethylene (TFE) norbornene copolymers are chosen. Etch rates in different plasmas used for several applications, such as poly, SiN mask open, and selective/nonselective SiO2 etch, are determined and compared to standard 193-nm platforms currently used for DRAM manufacturing. Looking at various base resins, significant differences can be found using HBr- or Cl2-based poly etch conditions and various fluorocarbon-based oxide etch chemistries. Up to 2.4 times higher etch rates in Cl2 and the different CxFy oxide etch recipes are observed for the highly fluorinated cycloolefines and the TFE norbornenes, showing a strong correlation between fluorine content and etch rate. After stress by different etch conditions, the polymer surfaces are characterized using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Surprisingly, the surface roughness of the methacrylic platforms and the norbornene base resin (determined by AFM) are found to be substantially higher than that of the highly fluorinated platforms. These results can directly be correlated to pictures obtained by optical methods (SEM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.