Abstract

Taking advantage of the large surface area that is covered with permanent positive charges of quaternary ammonium entities, this research aimed to develop environmentally friendly, organic antibacterial material from quaternized chitosan particles that may be applicable for biomedical devices, health and textile industries. The particles were formulated by ionic crosslinking of chitosan with tripolyphosphate followed by quaternization under heterogeneous conditions, via either direct methylation or reductive N-alkylation with a selected aldehyde followed by methylation. Sub-micron, spherical and positively charged quaternized chitosan particles were formed, as determined by 1H NMR, FT-IR, PCS and TEM analysis. Antibacterial activity tests, performed by viable cell (colony) counts, suggested that all quaternized chitosan particles exhibited superior antibacterial activity against the model Gram-positive bacteria, Staphylococcus aureus, as compared to the native chitosan particles at neutral pH. Only some quaternized chitosan particles, especially those having a high charge density and bearing large alkyl substituent groups, were capable of suppressing the growth of the model Gram-negative bacteria, Escherichia coli. The inhibitory efficiency of the quaternized chitosan particles was quantified in terms of the minimum inhibitory concentration (MIC). Damaging impact of the quaternized chitosan particles on the bacteria was also qualitatively determined by microscopic observation of the bacterial morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.