Abstract
In phase-shifting Fizeau interferometers, phase-shift errors and multiple-beam interference are the most common sources of systematic error affecting high-precision phase measurements. Nonsinusoidal waveforms can be minimized by applying synchronous detection with more than four samples. However, when phase-shift calibration is inaccurate, these algorithms cannot eliminate the effects of nonsinusoidal characteristics. Moreover, when measuring the surface profile of highly reflective samples, the calculated phase is critically determined not only by the decrease in the fringe contrast, but also by the coupling error between the harmonics and phase-shift errors. In this study, we calculate phase errors using phase-shifting algorithms that take into account the coupling error. We show that the 4 N – 3 algorithm, which consists of a polynomial window function and a discrete Fourier transform term, results in the smallest phase error. As a demonstration, the surface profile of a highly reflective silicon wafer is measured using a wavelength-tuning Fizeau interferometer and the 4 N – 3 algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.