Abstract

When measuring the surface shape of a transparent sample using wavelength-tuning Fizeau interferometry, the calculated phase is critically determined by not only phase-shift errors, but also by coupling errors between higher harmonics and phase-shift errors. This paper presents the derivation of a 13-sample phase-shifting algorithm that can compensate for miscalibration and first-order nonlinearity of phase shift, coupling errors, and bias modulation of the intensity, and has strong suppression of the second reflective harmonic effect. The characteristics of the 13-sample algorithm are estimated with respect to Fourier representation in the frequency domain. The phase error of measurement performed using the 13-sample algorithm is discussed and compared with those of measurements obtained using other conventional phase-shifting algorithms. Finally, the surface shape of a fused silica wedge plate obtained using a wavelength tuning Fizeau interferometer and the 13-sample algorithm are presented. The experimental results indicate that the surface shape measurement accuracy for a transparent fused silica plate is 3nm. The accuracy of the measurement is discussed by comparing the amplitudes of the crosstalk noise calculated using other conventional algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call