Abstract

Sonopiezoelectric therapy, an ultrasound-activated piezoelectric nanomaterial for tumor treatment, has emerged as a novel alternative modality. However, the limited piezoelectric catalytic efficiency is a serious bottleneck for its practical application. Excellent piezoelectric catalysts with high piezoelectric coefficients, good deformability, large mechanical impact surface area, and abundant catalytically active sites still need to be developed urgently. In this study, the classical ferroelectric material, bismuth titanate (Bi4Ti3O12, BTO), is selected as a sonopiezoelectric sensitizer for tumor therapy. BTO generates electron-hole pairs under ultrasonic irradiation, which can react with the substrates in a sonocatalytic-driven redox reaction. Aiming to further improve the catalytic activity of BTO, modification of surface oxygen vacancies and treatment of corona polarization are envisioned in this study. Notably, modification of the surface oxygen vacancies reduces its bandgap and inhibits electron-hole recombination. Additionally, the corona polarization treatment immobilized the built-in electric field on BTO, further promoting the separation of electrons and holes. Consequently, these modifications greatly improve the sonocatalytic efficiency for in situ generation of cytotoxic ROS and CO, effectively eradicating the tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.