Abstract

Defect engineering is a promising strategy to enhance light absorption and charge separation of photocatalysts. Herein, we simply tailor the quantity and distribution of oxygen vacancies, as one of typical defects, on surface or bulk of thermal-treated WO3 in the different H2 concentration. The quantity of bulk oxygen vacancies on WO3 consistently rises with the increased H2 concentration, while that of surface oxygen vacancies presents a volcano-type variation. The sample of WO3-H20, thermal-pretreated in 20% H2, contains the largest amount of surface oxygen vacancies. Our results show that both surface and bulk oxygen vacancies on WO3 can promote the visible light photocatalytic activity in water splitting, however, in different ways. Bulk oxygen vacancies mainly promote the visible light harvesting and slightly restrain the electrons and holes recombination by narrowing band gap energy (Eg), while surface oxygen vacancies significantly increase the charge-carriers separation efficiency by lowering valence band edge (VBE). Compared with the light absorption, the separation of electrons and holes is more critical in photocatalytic oxygen evolution over WO3, revealing the more decisive role of surface oxygen vacancies than bulk oxygen vacancies. Expectedly, WO3-H20 shows the highest charge-carriers separation efficiency and visible light photocatalytic performance. Our work provides a new insight into designing of efficient defect-engineered semiconductors for the related solar light utilization processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.